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Abstract

This paper proposes a new method for designing a developable surface by constructing a surface pencil passing through a given curve,
which is quite in accord with the practice in industry design and manufacture. By utilizing the Frenet trihedron frame, we derive the
necessary and sufficient conditions to construct a developable surface through a given curve. Considering the requirements in shoemak-
ing and garment-manufacture industries, we also study the special case of specifying the given curve as a geodesic. The given geodesic can
be classified into three types corresponding to each type of developable surface. We also present the polynomial representation of the
developable surface. The algorithm is convenient and efficient for applications in engineering.
� 2007 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in
China Press. All rights reserved.
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1. Introduction

Developable surfaces, which can be developed onto a
plane without stretching and tearing, have natural applica-
tions in many areas of engineering and manufacturing,
including modeling of ship hulls [1], apparel [2], automobile
components [3], and so on. In computer graphics, many
objects can be approximated by piecewise continuous
developable surfaces.

Many studies on designing with developable surfaces
have been reported. Given a set of data points, Redont
[4] built a family of circular cones to approximate them,
and then formed the desired developable surface using
patches of the circular cones. Bodduluri and Ravani [5],
Pottmann and Farin [6], Pottmann and Wallner [7] con-
structed developable surfaces in terms of plane geometry
using the concept of duality between points and planes in

3D projective space. They provided a compact representa-
tion for developable surfaces in the dual form. Chu and
Séquin [8], Aumann [9] developed a new approach to geo-
metric design of developable Bézier patches based on the de
Casteljau algorithm. Their algorithms are suitable for con-
structing developable surfaces with boundary curves of
polynomial form.

However, most existing work on developable surfaces
concentrates on providing designing methods but neglect-
ing the practical requirement in industry that a developable
surface passing through a given spatial curve is needed and
the curve is at the same time a geodesic of the surface. For
example, in shoemaking industry, the girth is used to mea-
sure the shoe size. And in garment-manufacture industry,
waist line is used. The girth and the waist line can be con-
sidered to be a geodesic on the shoe surface and the cloth,
respectively. Wang et al. [10] provided a method for design-
ing a surface pencil with the given curve as a common geo-
desic, among which each surface can be a candidate for
fashion designing. However, the developability of surfaces
was not considered, which is important in real applications.
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For example, shoes’ surface or any part generally is devel-
opable or approximatively developable, that is, it can be
flattened to a plane with minimum or even no distortion,
because the material, i.e. the leather, is a plane. Similarly,
the material of dresses’ surface, i.e. the cloth, is a plane.
Therefore, research on designing a developable surface
from a given curve is attractive. Inspired by Wang et al.
[10], in this paper, we propose a new method for designing
developable surfaces from a given curve. The problem of
requiring the curve to be a geodesic is also studied. And
the designing of three types of developable surfaces: cylin-
ders, cones and tangent surfaces is introduced.

2. Fundamentals

Developable surfaces can be briefly introduced as special
cases of ruled surfaces. The ruled surface is a kind of sur-
face commonly used in CAD/CAM systems. A ruled sur-
face P carries a one parameter family of straight lines L.
These lines are called generators or generating lines. The
general parameterization of a ruled surface P can be
expressed as

P : Pðr; tÞ ¼ CðrÞ þ ðt � t0ÞDðrÞ ð1Þ

where C(r) is called directrix curve and D(r) is a vector field
along C(r). For fixed values r, this parameterization repre-
sents the straight line L on P.

The parameterization P describes exactly a developable
surface if the condition det(C 0,D,D 0) = 0 is identically sat-
isfied, where C 0 and D 0 denote the derivatives of C(r) and
D(r), respectively. There are three types of developable sur-
faces: cones, cylinders (including planes), and tangent sur-
faces formed by the tangents of a space curve, which is
called the cuspidal edge, or the edge of regression. Cylin-
ders do not contain singular points. The only singular point
of a cone is its vertex. The singular points of a tangent sur-
face coincide with its cuspidal edge.

3. Parametric representation of developable surfaces passing

through a given curve

3.1. The case for passing through an arbitrary curve

Given a spatial parametric curve

R : RðrÞ ¼ ðX ðrÞ; Y ðrÞ; ZðrÞÞ; 0 6 r 6 H

Without losing generality, we assume that it has third
derivatives, and R 0(r) · R00(r) „ 0, because otherwise the
curve is a straight line segment or the principal normal is
undefined at some points on the curve. Then the compo-
nents of its Frenet frame are defined as [11]

TðrÞ ¼ R0ðrÞ
jR0ðrÞj

BðrÞ ¼ R0ðrÞ � R00ðrÞ
jR0ðrÞ � R00ðrÞj

NðrÞ ¼ BðrÞ � TðrÞ

The isoparametric surfaces generated from the arbi-
trarily parameterized curve R(r) are expressed as [10]

Pðr; tÞ ¼ RðrÞ þ ðUðr; tÞ; V ðr; tÞ;W ðr; tÞÞðTðrÞ;NðrÞ;BðrÞÞT;
0 6 r 6 H ; 0 6 t 6 T ð2Þ

where U(r, t), V(r, t), and W(r, t) are all C1 functions, called
the marching-scale functions in the directions T(r), N(r),
and B(r), respectively. The values of U(r, t), V(r, t), and
W(r, t) indicate the extension-like, flexion-like, and tor-
sion-like effects, respectively, by the point unit through
the time t, starting from R(r).

Our aim is to find the necessary and sufficient conditions
for the surface represented by Eq. (2) to be developable.
First, since R(r) is an isoparametric curve on the surface
P(r, t), this is equivalent to the case that there exists a
parameter t0 2 [0,T] such that P(r, t0) = R(r), 0 6 r 6 H.

Secondly, suppose P(r, t) is a ruled surface represented
by Eq. (1). Substituting t = t0 into Eq. (2), immediately
we have that R(r) must be the directrix, and

ðt � t0ÞDðrÞ ¼ ðUðr; tÞ; V ðr; tÞ;W ðr; tÞÞðTðrÞ;NðrÞ;BðrÞÞT

The above equation indicates that there exist three func-
tions which are only dependent on the parameter r: u(r),
v(r), and w(r), so that U(r, t), V(r, t), and W(r, t) can be
decomposed into the multiplication of t � t0 and u(r),
v(r), and w(r), respectively:

ðUðr; tÞ; V ðr; tÞ;W ðr; tÞÞ ¼ ðt � t0ÞðuðrÞ; vðrÞ;wðrÞÞ
Then Eq. (2) is rewritten as

Pðr; tÞ ¼ RðrÞ þ ðt � t0Þ
� ðuðrÞ; vðrÞ;wðrÞÞ � ðTðrÞ;NðrÞ;BðrÞÞT ð3Þ

Thirdly, P(r, t) is developable if and only if there is det
(R 0,D,D 0) = 0. A simple computation shows that, for a
regular curve R(r), the equation is equivalent to

ðvw0 � wv0Þ � juwþ sðv2 þ w2Þ ¼ 0 ð4Þ
where j and s represent the curvature and the torsion of
R(r), respectively, and u, v, w are shortening for functions
u(r), v(r), w(r), while u 0, v 0, w 0 for their derivatives, respec-
tively. When w „ 0, the above equation can be rewritten as

v
w

� �0
� s

v
w

� �2

þ 1

� �
þ j

u
w

� �
¼ 0

Having specified v(r) and w(r), users can solve the expres-
sion of u(r) conveniently using the above equation.

Then the following theorem can be derived.

Theorem 1. The necessary and sufficient conditions for the

surface P(r, t) to be a developable surface passing through the
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given spatial isoparametric curve R(r) are that there exist a

parameter t0 2 [0,T] and the functions u(r), v(r), and w(r),

such that P(r, t) can be expressed by Eq. (3), satisfying the

condition shown in Eq. (4).

Note that the above theorem still holds when substitut-
ing function f(t) for the parameter t. To obtain a develop-
able surface, we can first design the marching-scale
functions in Eq. (4), and then apply them to Eq. (3) to
derive the final parameterization. In what follows, we will
provide the criteria to classify the developable surface
according to the various forms of u(r), v(r), and w(r).

For cylinders, the vector field is parallel to a fixed direc-
tion. Assume the vector field is �D. From Eq. (3), we can
decompose �D along the three orthogonal vectors T(r),
N(r), and B(r), and their projections are u(r), v(r), and
w(r), respectively. Thus, the surface represented by Eq.
(3) is a cylinder if and only if there exists a constant vector
�D, so that

uðrÞ : vðrÞ : wðrÞ ¼ ð�D � TÞ : ð�D �NÞ : ð�D � BÞ
For cones, there exists a fixed point, the vertex, which is

the common intersection of all the generating lines. Sup-
pose the point is A, the ruling lines are all parallel to the
direction of the vector A � R(r). Similarly, the surface rep-
resented by Eq. (3) is a cone if and only if there exists a
fixed point A, so that

uðrÞ : vðrÞ : wðrÞ ¼ ½ðA� RðrÞÞ � T� : ½ðA� RðrÞÞ �N �
: ½ðA� RðrÞÞ � B�

Assume that the ratio of the above equation is 1/g(r), that
is, u(r)/[(A � R(r)) ÆT] = 1/g(r). With proper ratio function,
we can keep the singularity out of the designed surface.
Since P(r, t0 + g(r)) = A, that is, the vertex A corresponds
to the parameter sequence (r, t0 + g(r)), we only need to
guarantee that t0 + g(r) 62 [0, T] when r 2 [0, H].

Tangent surface is composed of tangents of a spatial
curve, the cuspidal edge, represented as E(r) in this study.
Every ruling line marches along the direction of the
vector E 0(r). So the surface represented by Eq. (3) is a
tangent surface if and only if there exists a curve E(r)
so that

uðrÞ : vðrÞ : wðrÞ ¼ ðE0ðrÞ � TÞ : ðE 0ðrÞ �NÞ : ðE 0ðrÞ � BÞ

Assume the ratio of the above equation is 1/g(r), that is,
u(r)/[E 0(r) ÆT] = 1/g(r). Since

EðrÞ ¼ P r; t0 þ
ðEðrÞ � RðrÞÞ � E 0ðrÞ

E0ðrÞ � E0ðrÞ gðrÞ
� �

we just need to select proper g(r) to keep singularities out of
the surface.

Besides the method mentioned above, the type of devel-
opable surface can be identified in a different way. The
ruled surface represented by Eq. (3) is a cylinder if and only
if D(r) · D 0(r) = 0, that is

vw0 � wv0 � juwþ sðv2 þ w2Þ ¼ 0

u0w� uw0 � suv� jvw ¼ 0

uv0 � u0v� suwþ jðu2 þ v2Þ ¼ 0

Known from Eq. (4), the solution of the above first
equality constructs a developable surface. The solution sat-
isfying all the three equalities constructs a cylinder or a
cone when

EðrÞ ¼ RðrÞ � R0ðrÞ �D0ðrÞ
D0ðrÞ �D0ðrÞDðrÞ ð5Þ

degenerates to a point. When E(r) represents a nondegener-
ate curve, the surface is a tangent surface.

All the three types of surfaces can be determined by
solving Eq. (4) or its rewritten expression. Discriminating
the solution functions u(r), v(r), and w(r) by the above
method, we can derive different types of surfaces with or
without singularities on them.

3.2. The case for passing through a geodesic

As mentioned above, in shoemaking industry, the
girth, which is used to measure the shoe size, is usually
regarded as a geodesic on the shoe surface. And the mate-
rial of shoe surface can be flattened to a plane with min-
imum or even no distortion, so it can be seen as
developable. In this section, we will solve this problem:
given a spatial curve, how to construct a developable sur-
face with it as a geodesic? Wang et al. [10] provided the
necessary and sufficient conditions for designing a surface
through a given geodesic. Combining those conditions
with developable requirements, we will derive the design-
ing method.

Assuming the given curve is R(r), Wang et al. [10] intro-
duced the necessary and sufficient conditions for a surface
denoted by Eq. (2) with R(r) as an isogeodesic curve. Zhao
et al. [12] simplified and rewrote them as follows: there
exists a parameter t0 2 [0, T] satisfying

uðr; t0Þ ¼ vðr; t0Þ ¼ wðr; t0Þ ¼ 0

ovðr; t0Þ
ot

¼ 0

owðr; t0Þ
ot

6¼ 0

Theorem 1 has given the necessary and sufficient
conditions for constructing a developable surface through
R(r). Together with the above conditions, we then have
the following theorem:

Theorem 2. The necessary and sufficient condition for P(r, t)

being a developable surface with R(r) as an isogeodesic is
that there exist a parameter t0 2 [0,T] and a function g(r),

so that P(r, t) can be represented by
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Pðr; tÞ ¼ RðrÞ þ ðt � t0ÞgðrÞðsT þ jBÞ ð6Þ
Theorem 2 shows that the property of the constructed

developable surface is completely determined by the
given geodesic, and so is the type of the surface. Since
there are three types of developable surfaces, the given
curve can be classified into three kinds correspondingly.
In what follows, we will discuss the relationship between
the given geodesic and its isoparametric developable
surface.

Suppose the surface constructed by Eq. (6) is a cylinder,
then there is D 0 · D = 0, which results in js 0 � j 0s = 0,
namely (j/s) 0 = 0. The ratio of curvature to torsion is a
constant, and so the curve is a generalized helix. Then
the following conclusion could be drawn.

Corollary 3. Planar curves or generalized helixes are

isogeodesic to cylinders.

Suppose the surface is a cone, then the expression in Eq.

(5) degenerates to a constant vector, that is, E 0(r) = 0. It
results in (s/j) 0 = G Æ iR 0i, where G is an arbitrary constant.

Let s(r) denote the arc length function of R(r), then there is

sðrÞ=jðrÞ � sð0Þ=jð0Þ ¼ G � sðrÞ ð7Þ

Corollary 4. Curves satisfying Eq. (7) are isogeodesic to

cones.

The curves not satisfying Corollaries 3 and 4 are isogeo-
desic to tangent surfaces.

Polynomials are preferred representation in engineering
application, such as Bézier and B-spline surfaces. However,
the developable surface represented by Eq. (6) is usually
not polynomial due to the normalization of T(r) and
B(r). The problem can be solved by selecting proper march-
ing-scale functions. That is, we can choose
u(r) = g(r) Æ iR 0i3(R 0,R00,R000), w(r) = g(r) Æ iR 0 · R00i3, where
g(r) is an arbitrary-scale function specified by users. Then
the surface is expressed as

Pðr; tÞ ¼ RðrÞ þ ðt � t0ÞgðrÞ½ðR0Þ2ðR0;R00;R00Þ � R0

þ ðR0 � R00Þ2 � ðR0 � R00Þ�

Particularly, g(r) can be selected to be a constant. Then
for a degree-n Bézier curve, the degree of its isogeodesic
surface is (6n � 12) · 1 generally. When n = 3, it is a
6 · 1 surface.

4. Examples

In this section, we will illustrate the method and verify
the conclusions. We first will derive the exact developable
surface pencil whose members include cylinders, cones
and tangent surfaces from a given helix. And then we will
discuss the case when the curve is given as a geodesic.

Given a circular helix represented by Fig. 1

RðrÞ ¼ ða cos r; a sin r; brÞ; a > 0; b 6¼ 0; 0 6 r 6 2p

the Frenet trihedron frame is

TðrÞ ¼ ð�a sin r; a cos r; bÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
NðrÞ ¼ ð� cos r;� sin r; 0Þ

BðrÞ ¼ ðb sin r;�b cos r; aÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p

The parametric surface defined by Eq. (3) is

Pðr; tÞ¼ ðða� tvðrÞÞÞ cos r� tffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þb2

p ðauðrÞ�bwðrÞÞ sin r;

�ða� tvðrÞÞ sin rþ tffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þb2

p ðauðrÞ�bwðrÞÞ cos r;

� brþ tffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þb2

p ðbuðrÞþawðrÞÞ

To design a developable surface, we have to solve Eq.
(4). We can first specify v(r) and w(r), and then compute
u(r) from

uðrÞ ¼ vw0 � v0wþ sðv2 þ w2Þ
jw

Given more information, such as the vector field direction,
or the vertex, or the cuspidal edge, we can design a cylinder
(Fig. 2), or a cone (Fig. 3), or a tangent surface (Fig. 4),
respectively, according to the results in Section 3.1.

In what follows, we will discuss the construction of a
developable surface with the given curve as a geodesic.

Fig. 1. The given helix with a = 2, b = 1.

Fig. 2. Construction of a cylinder P(r, t) (0 6 r 6 2p, 0 6 t 6 5) passing
through the given helix.
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Corollary 3 states that a helix is isogeodesic to a cylin-
der. Wang et al. [10] gave an example of constructing an
isogeodesic cylinder from a helix by choosing

uðrÞ ¼ � b2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
a2

; wðrÞ ¼ � b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
a

which in fact is a special case of Corollary 3, and so verifies
the correctness of the results in this study.

Fig. 5 shows the construction of an isogeodesic cylin-
der from a planar cubic Bézier curve. It is a 6 · 1 Bézier

surface. Besides, there is a kind of generalized helix which
is isogeodesic to cylinders. They can be represented
by polynomials. Suppose the expression is R(r) = A0r3 +
A1r2 + A2 r + A3, where Ai(i = 0,1,2,3) are three coeffi-
cient vectors. When the three vectors Ai(i = 0,1,2) are
perpendicular to each other, and 4A4

1 ¼ 9A2
0A2

2, the ratio
of curvature to torsion is a constant, s /j = � 3(A0,
A1,A2)/(2jA1j3), so R(r) is a generalized helix. It is isogeo-
desic to a cylinder (Fig. 6).

Generally, when the given curve does not satisfy Corol-
laries 3 and 4, it is isogeodesic to a tangent surface
(Fig. 7).

Fig. 3. Construction of cones P(r, t) (0 6 r 6 2p, 0 6 t 6 5) passing through the given helix.

Fig. 4. Construction of a tangent surface P(r, t) (0 6 r 6 2p, 0 6 t 6 5)
passing through the given helix.

Fig. 5. Construction of a developable surface passing through a given
cubic Bézier curve.

Fig. 6. A helix in cubic Bézier form is isogeodesic to a cylinder.

Fig. 7. The construction of a tangent surface with 6 · 1 degrees Bézier
representation passing through the given cubic Bézier curve as an
isogeodesic.
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5. Conclusions

In this study, we have developed a method to design a
developable surface using the surface pencil passing through
a given curve. By representing the surface by the combina-
tion of the given curve, and the three vectors decomposed
along the directions of Frenet trihedron frame, we derive
the necessary and sufficient conditions for a surface to be
developable. In addition, we have studied the problem of
requiring the given curve to be a geodesic, which has poten-
tial applications in engineering. Research results show that
the given curve can be classified into three kinds. They are,
respectively, isogeodesic to different types of developable
surface, that is, cylinders, cones and tangent surfaces. The
theory and algorithm can be directly applied into CAD
and CAM system which supports the shoemaking, gar-
ment-manufacture industry, and so on.
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